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This article is the first of a two-part series on the 
informetric distributions, a family of regularities found 
to describe a wide range of phenomena both within and 
outside of the information sciences. This article intro- 
duces the basic forms these regularities take. A model 
is proposed that makes plausible the possibility that, in 
spite of marked differences in their appearance, these 
distributions are variants of a single distribution; heuris- 
tic arguments are then given that this is indeed the 
case. That a single distribution should describe such a 
wide range of phenomena, often in areas where the ex- 
istence of any simple description is surprising, sug- 
gests that one should look for explanations not in terms 
of causal models, but in terms of the properties of 
the single informetric distribution. Some of the conse- 
quences of this conclusion are broached in this article, 
and explored more carefully in Part II. 

Introduction 

For a period of almost a century, in a vast variety of 
fields, researchers have discovered surprising regularities 
when they count events or tabulate the sizes of things. These 
discoveries, often called laws and named after the most 
prominent persons associated with them, have tended to 
be treated as curiosities. Yet new versions continue to be 
discovered and more recent empirical investigations have 
confirmed many of the earlier regularities. The intellectual 
challenge to explain or understand these regularities has 
engaged the attention of some of the most prominent re- 
searchers in mathematics and the sciences; for example, 
the field of stochastic processes has developed out of a 
classical article by Yule (1924) that was written to explain 
such a regularity, discovered by Willis (1922), in the field 
of evolutionary biology. Still, after some 50 years of in- 
vestigation, these regularities remain a puzzle. Recently 
there has been a resurgence of interest in Informetrics and 
related subjects, as evidenced by the formation of the jour- 
nal Scientometrics and the inauguration by Leo Egghe 
and Ronald Rousseau (1988) of an international conference 
series on the subject. 
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Increasing the appeal and importance of research in 
these regularities is the impression that many of them are 
identical in form, and that the different formulations are 
approximations of one another. Thus, though the content 
of these regularities vary substantially, we may very well 
be considering differing manifestations of a single regu- 
larity, which, to have a single rubric, I shall call the in- 
formetric law.’ 

In general, when confronted with a regularity such as 
that which we are now considering, we can take one of 
two approaches. For one, we can try to understand the 
regularity as a manifestation of some underlying, substan- 
tively interesting phenomenon, much as Keppler’s laws are 
consequences of the more basic laws of Newton; this is the 
more tempting and more common approach (Bookstein, 
1979). But it is also possible that these regularities are the 
result of very general causes that cut across a wide range of 
different phenomena; the ubiquitous normal and lognormal 
regularities of statistics come to mind as prototypes here. 
If such is the case, then the presence of these regularities 
would have little to say about the underlying phenomena. 
Indeed, a wide range of underlying phenomena would, in 
this case, result in regularities having the same form. In 
brief, it is my belief that the form these informetric regu- 
larities take is very robust and will tend to appear as a con- 
sequence of a wide variety of underlying models. The 
implication of the existence of such robust regularities for 
the philosophy of science is very interesting, for it directly 
concerns how we learn from evidence. This is further ex- 
plored in the concluding sections of this paper. 

My discussion of the informetric regularities is divided 
into two articles. In this article (Part I) I shall provide an 
overview of the regularities, describing several of the most 
prominent and indicating why it is possible that these may 
be variants of a single, more general regularity even though 
they differ greatly in appearance. Specifically, a model of 
data generation will be introduced, and these regularities 

‘Terminology varies here. There is some confusion regarding the use 
of the terms Informetrics. Bibliometrics, and Scientometrics. In earlier pa- 
pers I referred to the regularities discussed here as the Bibliometric regu- 
larities. My impression is that this term is being replaced in the literature 
by Informetrics, a term suggesting a wider range of applicability, and my 
usage in this paper is intended to be consistent with this evolution. 
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will be shown to represent different modes of description 
of the resulting body of numbers. This raises the possibil- 
ity that differences in how the distribution of values are de- 
scribed may be adequate to account for the differences in 
appearance of the regularities. I shall then continue the 
process of unification by showing, by means of heuristic 
approximations, that these regularities are in some sense 
equivalent to one another. In the closing sections of Part I, 
I shall consider some of the broader implications of the ro- 
bustness properties noted above. The companion article 
(Part II) is devoted entirely to the notion of robustness 
against ambiguity: it makes explicit what is meant by ro- 
bustness in this context, it illustrates similar properties for 
other regularities found in the social sciences, and finally 
explores these properties with regard to the informetric 
regularities themselves. 

lnformetric Regularities 

To illustrate the forms of these regularities, or laws, 
take I shall concentrate on examples from the information 
sciences, and then indicate in passing some other cases to 
give a sense of their breadth of application. In this section, 
a number of regularities describing phenomena in the so- 
cial and biological sciences will be defined. Each of these 
regularities act as prototypes for many similar regularities, 
formally the same but describing different domains of phe- 
nomena. I shall, in the next section, argue that the regulari- 
ties described in this section, though different in form and 
applied to different subject contents, are actually, to a 
good approximation, variants of one another. To prepare 
for this argument, 1 shall first define the regularities in a 
manner that emphasizes their similarity. 

To begin, notice a similarity in the type of phenomena 
described by these regularities. These regularities usually 
start with a population of discrete entities, for example, 
businessmen, scientists, words, or journals. Each of these 
entities is producing something over a time-like variable - 
dollars earned, articles published, occurrences of articles 
in a given discipline, to continue with the above examples. 
Below, I shall refer to the items as generating events, or as 
having a yield.’ Basically, these regularities chop off a 
segment of a time-like dimension and describe the distribu- 
tion in the number of events generated in that segment by 
the members of the population, one yield per member. Of- 
ten the segment is defined rather naturally; for example, 
the yield described by Pareto’s law is the amount of dollars 
earned in a one-year period; conceptually, however, any 
time period could have been used. For other regularities, 
the time slice is determined by considerations of conve- 
nience or external constraint; for example, the five-year 
span that Lotka originally used was imposed on him by 
Chemical Abstracts’ cumulation policy. Even Wyllis’ law 

‘A yield is a quantity, like income, that is possible to cumulate. This 
is very different from the types of variables, such as height, often treated 
in statistics. Awareness of this difference is critical for understanding the 
richness of the forms taken by the informetric regularities. 

can be conceived in this way, the yields being the net num- 
ber of species produced to date by a (variable) population 
of genera. Although I am not claiming that all regularities 
of the form I am discussing describe this type of phenom- 
ena, I do believe the association is a strong one, and that 
such phenomena are good candidates to test for a in- 
formetric law. Once one recognizes this underlying simi- 
larity among the regularities, it is natural to explore various 
ways that such phenomena can be described. I shall argue 
that the basic similarity among these regularities are ob- 
scured by (1) the different subject content and (2) the dif- 
ferent ways that we can describe the distribution of yields 
over a population of entities. To stress the unity of these 
regularities, I shall refer to yields in general and use the 
names of these regularities only to distinguish the different 
modes of description and the specific mathematical forms 
the regularities take. I will also try to use a consistent nota- 
tion below, especially for the critical quantities. Generally, 
I will use letters from the beginning of the alphabet to de- 
note arbitrary constants; in different parts of the dis- 
cussion, the same letters may refer to different values. 
Constants that are parameters intrinsic to the model may be 
denoted by other letters-for example, the Bradford mul- 
tiplier is denoted by k in keeping with tradition. I shall use 
the letter r to refer to rank, y to refer to a yield per item, 
and Y to refer to a cumulative yield. The letter N shall 
refer to the cumulative number of entities associated with a 
given range of yields, for example, the number of journals 
in the core of Bradford’s law. The letter f will denote the 
number of entities having a specific value for a yield (or a 
density for a continuous yield variable) - the notation sug- 
gesting a distribution function. Occasionally, when a quan- 
tity takes integer values and it is important to emphasize 
this fact, the letter n will be used, even though another let- 
ter, for example Y, may be more appropriate in that con- 
text. With this background, it is now possible to define the 
specific regularities. 

Bradford’s Law of Scattering 

This is probably the most prominent of the informetric 
regularities within the information sciences, perhaps be- 
cause of its promise for application to the control of litera- 
ture. Bradford (1934) discovered this regularity when 
studying the extent to which literature in a single discipline 
is scattered over a range of journals. He found that he 
could form a core of journals of central interest to the dis- 
cipline, and that if he formed rings of successively less 
productive journals, so that each ring contained the same 
number of relevant articles as the core, the number of jour- 
nals in a ring divided by the number of journals in the pre- 
ceding ring was approximately a constant, k. That is, if the 
core and each ring contained the same number of articles, 
then, if N, is the number of journals in the nth ring, 

N,, = k”N,, (1) 

for No the number of journals in the core. Although em- 
pirical investigation tends to be limited to a core and a 
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small number of rings, mathematical models of a Bradford 
population assume an infinite journal population. 

Leimkuhler Variant 

Leimkuhler (1967), and earlier Vickery (1948), found 
an “equivalent” version of this law: if we rank the journals 
in decreasing order of productivity for the concerned disci- 
pline, then N, the number of journals required to yield Y 
articles, is related to Y by: 

Y = A log(1 + BN) , (24 

where A and B are constants. It is useful to also have this 
equation in its inverted form: 

N = A’(exp(B’Y) - 1). (2b) 

Strictly speaking, Leimkuhler’s form of this law is 
stronger than Bradford’s. Bradford only claimed that a 
core can be found that enjoyed the regularity he formu- 
lated. Leimkuhler proved his relation to be valid only at 
the boundaries of the rings formed by Bradford. However, 
if we take the Leimkuhler version as primary, and assume 
we can give meaning to the notion of fractional journals 
and articles, then I shall show that for any core, the Brad- 
ford regularity will hold. (See also the discussion in Egghe 
(1985).) Thus, in the Leimkuhler version, a distinguished 
core is not really required. 

In form, Leimkuhler’s distribution (especially in the 
form of equation (2b)) looks very much like the CDF of 
traditional statistics, but this is misleading. We note that Y 
denotes the sum of yields corresponding to the top N jour- 
nals, not the actual yield of the Nth ranking journal. The 
sum of yields, while natural as a variable in this context, 
makes no sense in most statistical discussions (consider a 
discussion, for example, of heights of people rather than of 
their publications). A similar mode of description is used, 
however, in other contexts in which the distribution of yields 
is discussed; for example, the Lorenz curve is sometimes 
used by economists to illustrate disparities in the distribu- 
tion of resources (Samuelson, 1970). 

Lotka’s Law 

Lotka (1926) found that if he associated with each 
member of a group of chemists his article productivity, 
then the number of chemists, f, producing y articles was 
approximately given by 

f=$ (3) 

where A is an arbitrary constant and (Y is a constant ap- 
proximately equal to 2. Thus plotting log(f) vs. log(y) 
produces a graph approximating a straight line, and this 
plot has formed the basis of many of the regularities re- 
ferred to above. For example, substituting biological gen- 
era for scientists and species for articles would yield the 
important law of Willis mentioned above. In L&a’s law, 
the mode of description of this yield distribution is that of 

the traditional statistical probability distribution function; 
indeed, of the informetric regularities, this one is most 
consistent with traditional statistical description. 

Zipf’s Law 

Many of the informetric regularities depend on ranked 
data. The most prominent belongs to Zipf (1935), who 
analyzed the frequency of word occurrence in natural text. 
He found that if he multiplied a word’s frequency by its 
rank in number of occurrences in text, then the product 
was approximately constant: 

rXy=A, (44 

where r denotes a word’s rank, y its frequency (or yield), 
and A an arbitrary constant. In fact, this regularity holds 
best after we pass over the highest ranking documents. 
Thus, plotting log-rank vs log-frequency produces a 
straight line over a wide range, but droops at the lowest 
values. Mandelbrot has pointed out that a law of the form 

A 
’ = (1 + Br)” 

(4b) 

is more appropriate. As it is my goal to describe the rela- 
tions among these laws rather than to be accurate to the 
historical formulations, I shall mean this last form when I 
refer to Zipf’s law. 

Zipf’s law, like Lotka’s law, can be related to the forms 
of description traditional in statistics: if we solve equa- 
tion (4a) or (4b) for r in terms of y, and convert r to per- 
cent of population, the result is of the form 1 - CDF, 
where CDF is the cumulative distribution function well 
known in statistics. 

Pareto’s Law 

The final form I shall note is taken from economics. 
Pareto (1897) claimed that if we look at the incomes of the 
wealthiest members of a community, then the number of 
people, r, that earn more than y dollars a year is given ap- 
proximately by: 

A 
r=;, 

Y 

for some constants A and cy. Since r is what we otherwise 
refer to as the rank of the item, this law is a variant of Zipf’s 
law. This identity is obscured by Pareto’s law usually being 
formulated in terms of probabilities rather than ranks, and 
y being conceived of as a continuous variable. 

Although the above-mentioned regularities are the most 
prominent, many other regularities of this type have been 
found. For example, Kendall (1960) found that the opera- 
tions research literature also follows Lotka’s law as de- 
scribed for chemists. Bradford’s law is often used to refer 
to citations received by journals rather than the actual arti- 
cles appearing in them. It is claimed that the distribution of 
lake sizes obeys Pareto’s law and that the distribution of 
city sizes follows Zipf’s law. (See Fairthorne (1969), 
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Simon (1955), and Mandelbrot (1963) for discussions of suppose, for example, that we wish Y, to become YA. We 
the range of applicability of this law.) can formally rewrite equation (6a) as 

Relations among the Regularities 

Above I showed that the various informetric regularities 
can be seen as arising from different modes of description 
of the distribution of yields generated by a population 
of items. The question remains whether the difference in 
form of these regularities is due only to the difference 
in mode of description, or whether these regularities in fact 
describe differently distributed sets of values. I shall now 
present heuristic arguments that when one of these regu- 
larities is translated into the mode of description of another 
of these regularities, then the form of these distributions 
will be approximately the same. For other treatments, 
see also, for example, Egghe (1985), Yablonsky (1980), 
Haitun (1982), and Rousseau (in press). 

Bradford-Leimkuhler 

Leimkuhler showed the equivalence of Bradford’s law 
to a log form. A more direct derivation, similar to that of 
Vickery (1948), follows. 

Bradford, after ordering the entities in decreasing mag- 
nitudes of yield, established a core of the N, most produc- 
tive items (so N, is the rank of the last item put into the 
core), collectively responsible for a yield of Y,, and de- 
fined successive rings of items, each ring also collectively 
having a yield of Y,,. Leimkuhler related the rank of an 
item to the cumulative yield of all the lower ranking items. 
If we combine the first n rings, starting with the core as 
the 0th ring, we obtain a cumulative yield of Y = nY,; the 
number of items required is given by 

N = No + kNo + k2N,, + + . . + kn-‘No = 
k” - 1 
--NO k-l 

items. But, since n = Y/Y,, we find 

N kY’YO _ 1 

N,= k-l ’ 
@a) 

or, solving for Y, 

Y 
ln(1 + (k ,‘)N) 

r,= In(k) ’ 

(6b) 

If we set k - 1 to b, we get the form given by Leimkuhler, 
which can, in turn, be directly related to equation (2a). 

Note again that this form is strictly equivalent to Brad- 
ford’s form only for Y/Y, an integer. However, in this 
form, it is natural to interpret the law as holding for arbi- 
trary Y or N. 

The Leimkuhler form, as presented above, seems to de- 
pend on having begun with a core of N, items and a yield 
of YO, since these parameters appear explicitly in the equa- 
tions. That this is not the case is suggested by our being 
able to express the law in terms of transformed parameters: 

k-l N k(yb%,)+-%) _ 1 
.-= 

kY”‘YO-l N 
0 

pwo - 1 ’ 

or, 

where 

N k@Yb) _ 1 
N;,= k’-1 ’ 

(74 

and 
k’ = kYbfY0. 0) 

Thus, the Leimkuhler form looks like it could as well have 
come from a core of NI, items having a yield of Yi, where 
Nh, YA, N, and Y. are related as above. I shall now show 
this to be true, that is, given Leimkuhler’s form, with an 
apparent core of No, Bradford’s law does hold, starting 
with an arbitrary core, Nh. Indeed, if the Leimkuhler form 
does exactly describe a population, we could consider the 
consequences of beginning with a core of Nh instead of the 
designated value No. According to equation (6b), these Nh 
items will produce a yield, YA, of 

Y. In 1 + (k - I)$ 

r; = > 0 

In(k) ’ 

Direct algebraic manipulation shows that YA satisfies 

N; = No 
kybiyO - 1 

k-l ’ 

as suggested by the formal manipulations given above 
(equation (7a)) - that is, the current relation between NA 
and YA is identical to the earlier relation, in fact, a variant 
of equation (2b). 

If the core is ring zero, the nth ring with yield Yh will 
contain N,,, , - N, items, where 

N, = No(knyb’Yo - 1) . 
k-l 

That is, 

N - N, = N”(k 
(~+oyb~yO _ 1) ~O(/yYb’Yo _ 1) 

ntl k-l - k- 1 

k nY$Yo 

= No(kYb’YO - l)- 
k-l 

= N;k’“. 

Thus, if the Leimkuhler form is a valid description of our 
population, then we can define an arbitrary core of items 
and Bradford’s law will hold for that core as well. That is, 
the appearance in the formula of parameters reflecting the 
initial choice of core does not support the existence of a 
fundamental core, since corresponding parameters can be 
associated with a different core and the identical formula 
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be the result. Henceforth, when I mention Bradford’s law, 
I shall assume any core is acceptable. If so, Bradford’s law 
and Leimkuhler’s variant are equivalents. I shall comment 
on the significance of this below. 

An area of interest for commentators on Bradford’s law 
is to characterize the difference between disciplines by 
means of Bradford’s parameters. The constant, k, as a pa- 
rameter measuring the intrinsic scatter in a discipline, is 
heavily used here. We now see that k is ambiguous, since 
it depends on the core, which is itself arbitrary. Even 
within the original Bradford formulation, in which we may 
not freely choose a core, there remains some ambiguity. 
Suppose, for example, assuming an infinite population of 
items, we combine successive sets of s rings, so that the 
new core and each new ring will contain s times as much 
yield as the original core. If the original core had No items, 
the new core will have 

N; = No + kNo + . . - + k”-$Vo = - 
k”- IN 
k-l ’ (8) 

items; the new first ring (that is, the old sth through 2s-1 th 
rings) will have 

k” - 1 
k”N, + ks+‘NO + . . . + k2-‘No = k”---- 

k-l NO 

items, and the new nth ring, 

(k”)” . - 
k”- IN 
k-l ’ 

items. Here, once again, the Bradford regularity is ob- 
served, but with k” replacing k as the Bradford multiplier. 
Thus, if Bradford’s law, even in the restricted formulation 
sometimes given, holds for any case, it holds for a variety 
of cases, with the Bradford multiplier changing as we re- 
define the case: whether we accept Bradford’s narrow defi- 
nition of his law or Leimkuhler’s extension of it, the core is 
arbitrary; the Bradford scattering coefficient k depends on 
which core is chosen, and thus cannot be used to charac- 
terize a discipline. 

However, substituting from equations (7a) and (7b) for 
k’ and NA, we see: 

y = (kyb’G - 1) No(ktb;o ! 1) = 7 ; 
0 0 

similarly (substituting from equation (7b) for k’): 

x 
I 

ln(k’) =&=&. 

Thus we see it is (k - 1)/N, and ln(k)/Y, that are quantities 
invariant against changes in the core size. It is from these 
quantities, rather than from the Bradford multiplier, k, 
that we ought to construct statistics intended to describe 
a discipline and its scatter. More generally, since Brad- 
ford’s regularity is often observed, these quantities might 
be useful as a means to create measures of concentration 
(Rousseau, 1989). 

Relationship of Lotka and Zipf 

Bradford’s law represents one way of describing the 
output of a population of entities, each producing a stream 
of events. Lotka, looking at the same population, asked, 
how many items have a yield of y? He concluded that this 
quantity, f, is given by equation (3): 

f=+ 

where cr is a constant approximately equal to two. Lotka 
considered y to be an integer; I shall also assume this, 
though we can generalize to continuous y if we interpret f 
as a density function. The maximum yield, yo, is estimated 
as the output of only one item (f = I), so A = yt; below I 
shall substitute yg for A to simplify the form taken by the 
equations, though the argument does not depend on this 
substitution. Thus, 

f= yea 
0 Y . 

W 

To translate this form into the Zipf form, we ask how many 
items have a yield of y or more; this number will be the 
rank, r, of the items with yield y. This quantity is given by 
Xz%, (ye/x)*, which we approximate by (since (Y # 1) 

ro+om 

J 0 
YOU&, 

y-(1/2) x 

Thus 

y=yo 
a-1 

Solving for y, we find that the yield of the rth ranking item 
could be expressed in the form: 

ignoring an additive constant, l/2. As usual, A, B and C 
denote constants, as does (Y’. Here, 

A =Y,, 

and 

1 (y’ =- 
a - 1’ 

This is, indeed, a generalization of Zipf’s law, for when 
(Y’ = 1 and B = 0, we find r * y is constant. More reason- 
ably, though cy’ is approximately equal to 1, we do not ex- 
pect B = 0; however, for larger r, where Cr S= B, the Zipf 
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condition does hold, and available data indicates that it is 
only for larger r that Zipf’s law should be expected. 

The converse is obtained from equation (9a). The num- 
ber, f, of items with yield y is the difference in the ranks 
of the items having a yield of y + (l/2) and a yield of 
Y - U/2): 

f= *[($-’ - (*)J (10) 

This can be approximated by the derivative: 

That is, Lotka’s law is returned. 

Relationship of Leimkuhler to Lotka 

Lotka’s law relates a yield to the number of items having 
that yield, with the maximum yield, yo, being experienced 
by a single item. Thus, the cumulative yield, Y, up to the 
item of rank r, which itself has a yield of y, is given by 

Y = $n .fn, 
“=y 

for f,, the number of items having a yield of n. Given Lotka’s 
law, this quantity is given by 

y:Z=n? 

which we again approximate by an integral: 

‘A[ (yo +$-2 - (y y$-21 

Yo + 3 

:i i 
yiln ~ 

Y-i 

ifaZ2 

ifa = 2 

(114 

Since, by equation (9a), 

g= /-;“‘+ [-LJ-, 

Y is of the form 

Y 
A({B + Cr>a’ + 1) ~ 

I 
for ff # 2 

A ln(1 + Br) for (Y = 2 Ulb) 

where, for example, A = yi and B = (y. + (1/2))/yi for 
the second version, The second version is identical in form 
to Leimkuhler’s representation of Bradford’s law, and, 
since CY tends to be close to 2, is the form we would usu- 
ally expect. The above result, however, also shows the 
representation for (Y f 2. 

Relation between Zipf and Leimkuhler 

Since Lotka’s law is equivalent to Zipf’s and, if CY = 2 
implies Leimkuhler’s, we expect that Zipf and Leimkuhler 
would be related to each other. It is instructive, and easy, 
to show this directly: 

Given Leimkuhler’s log function, the yield of the rth 
ranking item is given by 

y, = A ln(l + Br) - A ln(1 + B(r - 1)) 

=Aln 1 + 
B 

1 + B(r - ’ 
(124 

that is, to first order in B/(1 + B(r - l)), 

AB AB 1 

yr = (1 - B + Br) = E 1 + 
(12b) 

or 

A’ 

” z (1 + B’r) ’ (12c) 

with constants A’ and B’ defined by equation (12b). This is, 
indeed, the modified Zipf form of the law, equation (9b), 
with the exponent, CX’, equal to one. This value of C-Y’ re- 
flects the restriction (Y = 2 in equations (11 a), (11 b). Thus, 
for (Y = 2, Leimkuhler implies Zipf; since Zipf was seen 
to imply Lotka, Leimkuhler implies (and is thus equivalent 
to) Lotka for cy = 2. 

Lotka-Pareto 

Pareto asked, how many items r have a yield greater 
than y? For a population observing Lotka’s law, this quan- 
tity is given by 

Thus 

A’ 
r= a’ 

Y 

for A’ = A/(1 - a) and cy’ = cx - 1. This form is, of 
course, that suggested by Pareto. Again note that Pareto’s 
law is very similar to Zipf’s law; however we are now con- 
sidering the highest yield to be infinite in comparison to 
the yields in the range we are interested in. 

Discussion 

My conclusion mat the various informetric distributions 
are very similar has depended upon heuristic arguments. In 
this section I shall describe an approach that can form the 
basis of a more precise, though numerical, comparison of the 
regularities. The reader can use the results of this section 
to get a better sense of how closely the heuristic results 
match a more exact evaluation. I shall examine, by way of 
example, how one might relate Zipf’s law to Lotka’s law. 
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Suppose, then, that we have a vocabulary of rmax word 
types, and that the probability of occurrence of the word 
ranking rth in probability of occurrence is given by A/r 
(Zipf’s law). The probability, then, that the rth ranking 
word in our population will occur exactly y times in our 
sample is given by the binomial distribution and approxi- 
mated by the following Poisson distribution: 

where A’ is the value A multiplied by the sample size. We 
would like to calculate the number of words expected to 
occur y times. Let &, r be the indicator random variable de- 
fined by 

ci’ 1 = if the rth ranking word occurs y times 
Y.7 ( 0 otherwise 

Thus the-number of words_ occurring y times is given by 
d, = &d,,,_and d, = E(d,), the expected value of d,, 
equals Z,E(d,,,) = lZ,Pr{y 1 r). 

If one wished to carry out this process numerically, one 
would, for a given r,,,, and sample size: 

(1) dvaluate the constants, A and A’. A is determined by 
the requirement that probabilities sum to one; 

(2) compute dy for a range of values y, and 
(3) compare the results with those predicted by L&a’s law. 

BY varying G,, and sample size, the reader can see the 
impact of population and sample size on the accuracy of 
the approximations. How satisfying the approximations are 
will vary from person to person. The results of such experi- 
ments as carried out by the author seemed to confirm the 
reasonableness of the heuristics: for low values of y, the 
simulations diverged from the Lotka form. This became 
pronounced when I assumed a small vocabulary (small rmax). 
However, for realistic vocabulary sizes, and for y greater 
than 3 or 4, the two results become quite close. 

Consequences for the Social Sciences 

A striking feature of the informetric regularities is that 
many of them occur in the biological and social sciences, 
fields otherwise resistant to the discovery of mathematical 
regularity. One reason that we have been unsuccessful in 
discovering regularities in the social sciences is that, unlike 
the physical sciences, the social sciences have not been 
able adequately to conceptualize and precisely to define 
those variables which would enter into the regularities. 
The contrast with the physical sciences is striking. Mo- 
mentum, for example, is mass times velocity, not some 
undefined function of these quantities; and both mass and 
velocity are well defined. The regularities of physics in 
which momentum appear depend on exactly this definition. 
In contrast to this, the social sciences are burdened by am- 
biguities and arbitrariness in the definitions of measure- 
ments. For example, the five year time span chosen by 
Lotka in his study of publication patterns within chemistry 

was determined by the cumulation period of Chemical 
Abstracts, a unit chosen for convenience and independent 
of Lotka’s research concerns. Biological classification, on 
which Willis’ law is based, is notorious for the arbitrari- 
ness with which genera and species are defined (Sneath & 
Sokal, 1973). Even publication counts have an element of 
ambiguity, most strongly evidenced by the problem of how 
to count papers with multiple authors, but also, papers of 
different size and significance. 

Under these conditions, it is surprising that any regular- 
ity at all can be found, for even if regularities existed, we 
would not expect them to be discovered until the appropri- 
ate concepts were defined and appropriate measuring tech- 
niques developed. Recognizing these difficulties increases 
the surprise with which the informetric regularities are 
met. Yet it is precisely this observation that may suggest 
an explanation for the prevalence of these regularities. For, 
in searching for scientific reguiarities under the conditions 
described above, a minimum condition that we must demand 
is that the law be resistant to (or stable against) ambiguity 
and imperfect measurement. Thus, a reasonable question 
to ask is, can we in some way characterize regularities that 
enjoy this type of resilience, so that when we seek regulari- 
ties, we should restrict our search to members taken from 
this class. This is the approach I shall take in Part II: I 
shall assume that a regularity can be expressed in terms of 
a function that keeps the same form when we change the 
conditions of measurement; I shall show that the informetric 
regularities do have this resilience; and I shall show that 
for a range of modification (ambiguity), those functions 
that are resilient to the changes form a very restricted class. 
This is consistent with our findings above: the regularities 
we have examined, though superficially very different, 
were found to be variant expressions of a single distribu- 
tion. This suggests that there is something special about 
this single form that permits it to be found in domains 
where such regularities would be surprising. I shall argue 
that that special quality is its resiliency to ambiguity. 

General Implications of lnformetrics 

I have defined a number of regularities reported in a 
wide range of different disciplines, and have argued that 
we can think of these as different manifestations of a single 
regularity. In the preceding section, I suggested that, given 
the nature of the social and biological sciences, we should 
expect that such a regularity be very resilient to ambiguity 
in definition. In this last section, I shall consider the impli- 
cation of the existence of such regularities for scientific in- 
vestigation in general. 

The importance of the existence of robust laws for sci- 
ence in general can be best seen by examining the logic of 
scientific learning. The paradigm: 

IfHthenC 

H 

therefore C 
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is well understood as the basis of deductive reasoning. 
Similarly, 

If H then C 

c 

therefore H 

is generally acknowledged as a logical fallacy. On the 
other hand, if one is predisposed toward believing H, and 
C is a consequence of H, then observing C does increase 
our confidence in H. The scientific method is the process 
by which hypotheses are tested by examining the validity 
of their consequences. 

The problem here is that if H implies C, so may other 
hypotheses H ‘, H”, etc. If we wish to understand the role 
of evidence in supporting one of a number of competing 
hypotheses, a Bayesian framework is most suitable. From 
a Bayesian point of view, we begin with a sense of likeli- 
hood regarding the truth of a hypothesis, expressed as a 
probability, P,,(H). We then try to increase this probability 
by examining evidence, E. The effect of evidence, E, is 
given by 

P,(H) f’,(H) P@ 1 H) 
p,(N)=iqzq+pj 

where P,(H)/P,(g) is the odds in favor of the hypothesis 
after examining the evidence, and P,(H)/P,(H) is the odds 
before seeing the evidence. The effect of evidence, in the 
Bayesian model, is given by the factor P(E 1 H)/P(E 1 H), 
where P(E (H) and P(E 1 G) are the probabilities of E con- 
ditional on the hypothesis being true (H) and not true (8), 
respectively. The value of this model is that (1) it makes 
explicit that evidence favoring a hypothesis is not a proof 
that the hypothesis is true, a well-understood, but often 
overlooked, consequence of deductive logic; and (2) it com- 
pels us to consider the possibility that the evidence may be 
the consequence of other models. In particular, even though 
H implies E, if ?;r implies E almost as strongly, the exis- 
tence of E provides very little support for H. The deeply 
ingrained, though unstated, assumption behind much sci- 
entific investigation is that P(EI@) will, in general, be 
small, and that the more precisely E is formulated, the less 
likely it will be a consequence of hypotheses other than 
that from which it was derived (Nagel, 1961). 

It is necessary to understand fully this mode of argument 
in order to appreciate properly the implications of the ap- 
proach to the informetric distributions taken in this paper 
and its companion. For the position I am taking is that in 
certain areas of research, P(E 1 z) approaches P(E 1 H) in 
size, and that this is, in particular, true of the phenomena 
studied in informetrics. In such situations, although we 
may have a causal model, however reasonable, that pre- 
dicts that a member of the family of informetric distribu- 

tions will describe the data we shall obtain, verifying this 
expectation is in fact very weak support for this model. In 
other words, searching for informetric distributions may be 
a very poor way of trying to support a theory that predicts 
the existence and form of these distributions. 
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